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Abstract

Because of singularity of the elastic sti�ness matrix, analysis of underconstrained systems requires the

comprehensive sti�ness matrix, comprising both kinds of ®rst-order structural sti�nessÐelastic and statical-
kinematic. The latter accounts for the role of the member forces, induced in the system by the equilibrium part of
the applied load, as the source of the system resistance to the perturbation part of the same load. Evaluation of the

sought member forces using orthogonal load resolution into equilibrium and perturbation components is awkward
and computationally expensive. A special modi®cation of the singular elastic sti�ness matrix simpli®es the procedure
and makes it amenable to the conventional tools of structural analysis. The e�ciency and accuracy of the procedure
is illustrated by a detailed numerical example. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

This note is a companion to a recent paper by the author (Kuznetsov, 1997) where the comprehensive
sti�ness matrix for an underconstrained structural system has been introduced as the sum of the
conventional elastic sti�ness matrix and the statical-kinematic sti�ness matrix:

Cmn � Emn � Kmn � F i
mSijF

j
n � F i

mnLi �1�

The notation (employing the summation convention for a repeated index) is as follows.

F i
n � @F i=@Xnj0, F i

mn � @2F i=@Xm@Xnj0 �2�

are, respectively, the C�N constraint function Jacobian matrix and the set of C constraint function
Hessian matrices obtained from the set of constraint equations of the system,

F i�X1, . . . ,Xn, . . . ,XN; Li � � 0, i � 1, 2, . . . ,C: �3�

The C constraint functions F i relate the N generalized coordinates, Xn, to the known geometric
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parameters, Li (linear and angular sizes of the structural members). At least one solution to the
constraint equations, Xn � X0

n, must exist and is assumed known; it is taken as the reference geometric
con®guration. Since the equilibrium matrix for a given con®guration is the Jacobian matrix transpose,
the equilibrium equations for the reference con®guration are

F i
nLi � P�n: �4�

Here P�n is an external load with N components acting in the directions of the respective coordinates, Xn.
To be statically possible, the load must be in the column space of the equilibrium matrix, in which case
it is called an equilibrium load. The generalized constraint reactions, Li, depend on the form of
constraint functions (3); for a pin-bar assembly with the constraint equations expressing inextensibility
conditions for the bars, Li are simply the bar forces.

In terms of constraint eqns (3), elongations of structural members are interpreted as the constraint
variations, fi, related to the system displacements, xn, by the kinematic relations

F i
nxn � fi: �5�

If elongations are elastic, the member forces are expressed with the aid of the diagonal matrix of
member sti�nesses, Sij:

Li � Sijfj � SijF
j
n xn: �6�

Substituting this into eqn (4) leads to the system of equilibrium equations in displacements

F i
mSijF

j
n xn � Emnxn � P�m �7�

where the elastic sti�ness matrix, Emn, has the same rank, r, as the matrix F i
n; thus, for an

underconstrained structural system (r<N), the elastic sti�ness matrix is singular. Although round-o�
errors in coordinate digitization and other numerical operations are likely to produce instead a
nonsingular matrix, it is very ill-conditioned; for the purposes of this discussion, such matrices will be
referred to, and treated as, singular.

Singularity of the elastic sti�ness matrix is a sign of inadequacy of the linear elastic model. Physically,
it means that the system cannot support certain loads without large displacements. Algebraically, this
indicates the existence of the Jacobian matrix nullspace, i.e., the space of inextensible displacements, x0

n,
representing a nontrivial, inde®nite magnitude, solution to the homogeneous system of kinematic
equations

F i
nxn � 0 �8�

A conventional way of restraining inextensible displacements is to account for sti�ness imparted to the
system by pre-existing stress state. Indeed, any displacement from a state of equilibrium alters the nodal
resultants of the pre-existing member forces, thereby giving rise to `product forces' (Calladine, 1982;
Pellegrino and Calladine, 1986). These forces are usually accounted for in any incremental geometrically
nonlinear analysis, even one with a nonsingular elastic sti�ness matrix.

The statical-kinematic sti�ness matrix Kmn in eqn (1) re®nes the conventional nonlinear analysis and
makes it possible in the absence of initial forces produced by prestress or pre-existing loads. This matrix
is based on the orthogonal load resolution whereby a general load Pn is resolved into its equilibrium
and perturbation components: P�n in the column space of the equilibrium matrix, and pn in its
orthogonal complement space (the left nullspace), so that
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P�n � pn � Pn, P�npn � 0: �9�

Such a resolution always exists, is unique and local (con®guration-speci®c).
An equilibrium load is balanced by a structural system in a given con®guration without any

displacements (assuming stability and perfectly rigid members). On the other hand, under a perturbation
load, equilibrium in the original con®guration is impossible and displacements are unavoidable
regardless of the elastic properties of the system. The reason is that perturbation loads and inextensible
displacements are in the nullspace of the singular elastic sti�ness matrix, which rules out a unique
solution for displacements.

Some software packages contain remedies for dealing with an ill-conditioned elastic sti�ness matrix,
like the single point constraint option or the soft spring option. Introducing such ®ctitious constraints,
rigid or soft, expands the column space of the matrix, restores its rank, and makes solution possible.
The introduced constraints develop reactions equilibrating the perturbation part of the applied load, i.e.,
the part that the system cannot resist in its original con®guration. Rigid ®ctitious constraints produce
the necessary reactions without any de¯ection, thus preserving the system con®guration (except for the
elastic deformations); ¯exible constraints may have to undergo very large de¯ections before they
equilibrate the perturbation part of the load. In either case (rigid or ¯exible constraints), the imparted
resistance to the perturbation load is ®ctitious and the obtained solution may be grossly inaccurate. For
underconstrained systems, such a solution is often unsuitable for either an iterative re®nement or as the
®rst step of an incremental procedure.

The basic idea underlying the matrix Kmn is to account for the role of the equilibrium part of the
applied load as the source of the system resistance to the perturbation part of the same load. In fact,
this represents the actual physical mechanism enabling an underconstrained structural system to support
a general load. For a given equilibrium load, the system resistance to perturbation loads is expressed by
the positive de®nite (assuming stable equilibrium) tangent sti�ness matrix Kmn. The matrix is purely
statical-kinematic in nature: it is determined solely by the current geometry of the system and the
member forces induced by the equilibrium part of the applied load. Note that the elastic properties of
the system are irrelevant in the context of perturbation loads.

The de®nitive feature of the statical-kinematic sti�ness matrix is the forward dependence on the
equilibrium part of the external load (as opposed to a pre-existing load or prestress). However, the
matrix use requires knowing the member forces induced by the equilibrium part of the load.

2. Modi®ed elastic sti�ness matrix

A direct approach to obtaining the member forces produced by the equilibrium part of the applied
load involves a computationally expensive procedure of pseudoinverse (Strang, 1988). Worse still, for
underconstrained systems with simultaneous statical and kinematic indeterminacies (Tarnai, 1980), the
analysis requires orthogonal load resolution followed by solving a statically indeterminate problem for
the equilibrium part of the applied loadÐan awkward procedure alien to the conventional ®nite element
methodology and tools (Kuznetsov, 1997).

It turns out that instead of using pseudoinverse or the orthogonal load resolution, the sought member
forces can be evaluated by solving a system of equations wherein the elastic sti�ness matrix is modi®ed
in a certain way. The resulting procedure utilizes only conventional tools of the ®nite element analysis
and statical indeterminacy does not a�ect it.

The singular elastic sti�ness matrix Emn is modi®ed by adding to its diagonal elements a very small
quantity, e, of the same unit dimension:
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E�mn � Emn � eImn �10�
where Imn is the identity matrix. Clearly, the sti�ness matrix so modi®ed is no longer singular.

The displacements of the modi®ed system under a given load Pm are obtained from

E�mnxn � Pm: �11�
These displacements can be presented as a combination of inextensible and elastic displacements,

xn � x0
n � x�n, �12�

which are, respectively, in the nullspace of the original singular elastic sti�ness matrix and in its
orthogonal complement space (Volokh and Vilnay, 1997). Inextensible displacements, x0

n, produce rigid
body translations and rotations of structural members (no elongations), whereas elastic displacements,
x�n, produce member elongations and the resulting internal forces. Accordingly, the member elongations
are obtainable from the kinematic relations (5) (the linearized constraint equations) as the constraint
variations, fi, corresponding to displacements (12); the inextensible displacements are ®ltered out in the
process by virtue of eqn (8),

fi � F i
nxn � F i

nx
�
n; �13�

so that the resulting member forces are still given by eqn (6).
An external load equilibrated by the modi®ed system with displacements (12), can be separated into

two components, attributable, respectively, to the inextensible and elastic displacements:

E�mnx
0
n � Emnx

0
n � ex0

m � pm; �14�

E�mnx
�
n � Emnx

�
n � ex�m � P�m: �15�

The ®rst product in the right hand side of eqn (14) vanishes because of eqns (7) and (8). The second
term admits a serendipitous interpretation rooted in the statical-kinematic duality: as a load following
the pattern of inextensible displacements, it represents a perturbation load for the original system
(inextensible displacements and perturbation loads span one and the same spaceÐthe null space of the
constraint Jacobian matrix). Both terms in the right of eqn (15) are multiples of the elastic displacement
vector x�n which is in the column space of the original equilibrium matrix, hence, is an equilibrium load
for the original system.

According to eqn (11), wherefrom the above displacements have been obtained, the sum of the
perturbation and equilibrium loads, given respectively by eqns (14) and (15), equals the given load Pm.
Thus, the modi®ed sti�ness matrix in eqn (10) implicitly performs the orthogonal load resolution,
making unnecessary an evaluation of the equilibrium part of the applied load and solution of
equilibrium equations for this load.

In physical terms, amending the singular sti�ness matrix in eqn (10) amounts to imposing very
¯exible, identical elastic constraints on all N nodal degrees of freedom of the system. Since the
perturbation part of the applied load cannot be supported by the system, it is resisted solely by the
introduced constraints, at the expense of their (perhaps, large) displacements. Remarkably, with all of
the imposed constraints having the same sti�ness e, their reaction pattern described by eqn (14)
represents exactly the perturbation part, pn, of the applied load. This follows from the fact that pn
mimics the pattern of the inextensible displacements (which makes it a perturbation load) and the fact
that the rest of the load is an equilibrium load.

The equilibrium load in eqn (15) is balanced by the nodal resultants of the member forces produced
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in the modi®ed system by displacements x�n. Since these are elastic displacements both for the given
system and for the array of imposed ¯exible constraints, load P�m is shared by the two subsystems in
proportion to their respective sti�nesses, as seen from the right hand side of eqn (15). If the chosen
magnitude of e is su�ciently small, the equilibrium part of the applied load is supported almost entirely
by the given system, with the contribution of the imposed array of ¯exible constraints con®ned to a
designated error tolerance. Thus, the ¯exible constraints enable the modi®ed system to support a general
load without materially a�ecting the member forces corresponding to the equilibrium part of the applied
load. According to eqns (6) and (8), the sought member forces are found using displacements xn

obtained by solving eqn (11):

Li � SijF
j
n x
�
n � SijF

j
n xn: �16�

With these forces available, the statical-kinematic sti�ness matrix can be assembled and added to the
elastic sti�ness matrix to form the comprehensive sti�ness matrix, eqn (1).

Although the outlined approach involves only linear operations, it amounts to a two-stage semi-
nonlinear analysis, due to the described forward dependence feature. The approach can be used as a
typical step in either an iterative or incremental nonlinear analysis. Note one particular situation that
de®es the proposed procedure by making a nonlinear problem nonlinearizable. This happens when the
applied load does not contain an equilibrium part, i.e., is a pure perturbation load. Then the statical-
kinematic sti�ness matrix vanishes, leaving the comprehensive tangent sti�ness matrix singular. A
possible practical remedy is to add a ®ctitious equilibrium load (e.g., by introducing an arbitrary set of
member forces and evaluating their nodal resultants) and then to remove this load in one or several
incremental steps.

3. Example, observations and discussion

Consider a plane underconstrained pin-bar system consisting of two symmetric polygons connected
with two vertical posts (Fig. 1). Its geometric con®guration is de®ned by N � 8 coordinates of the four
nodes and although the number of constraints (bars) is also C � 8, the system is not geometrically
invariant but only quasi-invariant. Accordingly, the equilibrium matrix is singular not due to the lack of

Fig. 1. Underconstrained quasi-invariant pin-bar system.
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constraints, but because of the singular geometry. As a result, the system admits a single state of self-
stress with tension in the upper and lower chords and compression in the posts. The self-stress, being a
nontrivial solution to the homogeneous equilibrium equations, indicates that the equilibrium matrix and,
with it, the elastic sti�ness matrix, are singular. The singular con®guration is physically realizable by
prestressing which is assumed of some ®nite but negligibly small magnitude.

After specifying the system geometry with suitable integer bar lengths shown in Fig. 1, the singular,
8 � 8 equilibrium matrix is formed; the matrix rank is r � 7 so that degree of statical indeterminacy of
the system is S � Cÿ r � 1. The elastic sti�ness matrix (Table 1) is evaluated assuming axial sti�nesses
of all bars identical, EA � 5000; this matrix is also singular, with the rank r � 7.

Consider a general load shown in Fig. 1. The horizontal and vertical nodal components of the load,
along with the components of its equilibrium and perturbation parts (obtained by orthogonal
resolution), are given in Table 2.

Note that the explicit orthogonal load resolution has been carried out solely for the purpose of the
intended comparisons; the main objective of this paper is to present and explore computational

Table 1

Singular elastic sti�ness matrix for the example system

1640 ÿ480 ÿ1000 0 0 0 0 0

ÿ480 1193 0 0 0 ÿ833 0 0

ÿ1000 0 1640 480 0 0 0 0

0 0 480 1193 0 0 0 ÿ833
0 0 0 0 1640 480 ÿ1000 0

0 ÿ833 0 0 480 1193 0 0

0 0 0 0 ÿ1000 0 1640 ÿ480
0 0 0 ÿ833 0 0 ÿ480 1193

Table 2

Applied load and its mutually orthogonal equilibrium and perturbation parts

Pn 0 0 0 0 0 1 0 1.1

P�n 0.012 0.016 0.012 ÿ0.016 ÿ0.012 1.016 ÿ0.012 1.084

pn ÿ0.012 ÿ0.016 ÿ0.012 0.016 0.012 ÿ0.016 0.012 0.016

Table 3

Three alternative solutions for displacements and forces

Single point constraint Load resolution Modi®ed sti�ness matrix

Displacements Forces Displacements Forces Displacements Forces

ÿ0.00100 ÿ0.7994 ÿ0.00092 ÿ0.7369108 ÿ12000 ÿ0.7369109
0 ÿ0.6396 4.66Eÿ10 ÿ0.6015287 ÿ16000 ÿ0.6015288
ÿ0.00164 ÿ0.7994 ÿ0.00152 ÿ0.7669108 ÿ12000 ÿ0.7669107
0.00352 1.0339 0.00330 0.9830892 16000 0.9830891

0.00095 0.8271 0.00085 0.7984713 12000 0.7984713

0.00046 1.0339 0.00052 1.0130892 ÿ16000 1.0130891

0.00178 0.3797 0.00164 0.4261465 12000 0.4261463

0.00409 0.4797 0.00388 0.4761465 16000 0.4761462
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alternatives to load resolution. Still, there are some advantages to having an explicit expression for the
perturbation load. First, since the number of linearly independent perturbation loads for any system is
V � Nÿ r, for the example system there exists only one such load. Thus, in this case the perturbation
part of any external load Pn is determined by just one scale factor. Second, since this single perturbation
load mimics the displacement pattern of the inextensible deformation mode, the latter is obtained as a
by-product of evaluating the former (and vice-versa).

For the given general load (Fig. 1), an exact linear solution to the problem does not exist. Three
approximate solutions have been obtained and compared, judging by the e�ort required and results
produced. The ®rst solution utilizes a single point constraint and the resulting system of equations with
nonsingular sti�ness matrix. The second solution is obtained by separating and applying the equilibrium
part of the given load; since this load is in the column space of the original singular sti�ness matrix, the
obtained equations are compatible and solvable by a suitable numerical method. The result is the best
possible (least square) approximate solution for the original, incompatible, system of equations with the
given load in the right hand side. Finally, the modi®ed sti�ness matrix approach based on eqn (11) has
been implemented.

The described three solutions are presented for comparison in Table 3. In the ®rst solution, the
vertical displacement at node 1 (dof no. 2) has been restrained by a rigid support. In the second solution
(the singular sti�ness matrix and equilibrium load), a very soft spring for dof no. 2 was introduced to
control the inextensible displacements which are, strictly speaking, of zero magnitude. The third solution
employs eqn (11) with the modi®ed sti�ness matrix. In all three cases the member forces are evaluated
from the obtained displacements by using eqn (6).

In the ®rst solution, the reaction of the introduced rigid constraint is exactly R � ÿ0:1. Although the
e�ective load (inclusive of R ) applied to the system is an equilibrium load, it is not the equilibrium part
of the given load (cf Table 2). In the second solution, with the equilibrium load obtained by the
orthogonal resolution, the reaction of the soft spring, R � 5Eÿ 16, is strictly a numerical noise. This
illustrates a statical property of independent constraints (Kuznetsov, 1991). For a system under an
equilibrium load, imposition of an independent constraint has no e�ect on the force distribution and the
introduced constraint is force-free. (Note that introduction of an independent constraint into a
geometrically invariant system is impossible). Finally, in the third solution, the singular sti�ness matrix
was modi®ed according to eqn (10), with e � 1Eÿ 6.

Comparing the presented solutions and results leads to the following observations:

(1) The computational expenses of the ®rst and third solutions are practically the same whereas the
second one, involving the orthogonal load resolutions, is the most expensive.

(2) The ®rst solution yields reasonably looking, but not very accurate displacements and even worse
member forces. This is the result of subjecting the system to a wrong e�ective equilibrium load (a
combination of the given load with the reaction in the introduced rigid support).

Table 4

Composition of statical-kinematic sti�ness matrix

d1 � d2 � d7 0 ÿd2 0 ÿd7 0 0 0

0 d1 � d2 � d7 0 ÿd2 0 ÿd7 0 0

ÿd2 0 d2+d3+d8 0 0 0 ÿd8 0

0 ÿd2 0 d2+d3+d8 0 0 0 ÿd8
ÿd7 0 0 0 d4+d5+d7 0 ÿd5 0

0 ÿd7 0 0 0 d4 � d5 � d7 0 ÿd5
0 0 ÿd8 0 ÿd5 0 d5+d6+d8 0

0 0 0 ÿd8 0 ÿd5 0 d5 � d6 � d8
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(3) The displacements in the third solution are so predominantly inextensible that their elastic

components (of the same order as in the other two solutions) are unobservable within the number of

decimal places displayed.

(4) Most importantly, the member forces in the third solution coincide to within six decimal places with

those of the best (least square) solution based on the orthogonal load resolution. (This is consistent

with the above value of the parameter e.) Thus, a practically identical evaluation of the member

forces sought is achieved in the third solution at a lower computational expense.

With the member forces produced by the equilibrium part of the given load available, the statical-

kinematic sti�ness matrix in eqn (1) can be constructed as a combination of constraint function

Hessians weighted by the constraint reactions. Using the notation di � Li=Li, this symmetric matrix,

given in Table 4, re¯ects the system connectivity.

The statical-kinematic sti�ness matrix, evaluated using the member forces from the third solution in

Table 3, is combined with the singular elastic sti�ness matrix (Table 1) to form the comprehensive

sti�ness matrix, eqn (1), presented in Table 5.

Upon solving the obtained system of equations for displacements, the member forces are evaluated

from eqn (6). The outcome is presented in the ®rst two rows of Table 6.

The member forces are fairly close to their previously calculated values in the last two solutions of

Table 3; this is an illustration of the accuracy of the least square solution. Although the system

displacements under the given load are predominantly inextensible, they are very di�erent from, and are

much more accurate than, the displacements in any of the three solutions in Table 3. Furthermore, the

displacement magnitudes, compared to the system dimensions, provide a good clue to the overall

accuracy of the analysis. For the present example, the achieved accuracy has been assessed by updating

the system geometry (using the displacements from Table 6) and evaluating the corresponding new

nodal resultants of the same member forces. The found nodal force resultants, presented in the third

row of Table 6, ideally must balance the applied load Pn (the last row in the Table). Their comparison

suggests that the accuracy of the presented analysis is reasonable; if judged otherwise, an iterative or an

incremental nonlinear analysis is in order.

Table 5

Comprehensive sti�ness matrix

1639.8 ÿ480 ÿ999.9 0 ÿ0.071 0 0 0

ÿ480 1192.8 0 0.1203 0 ÿ833.1 0 0

ÿ999.9 0 1639.8 480 0 0 ÿ0.079 0

0 0.1203 480 1192.8 0 0 0 ÿ833.1
ÿ0.071 0 0 0 1640.4 480 ÿ1000 0

0 ÿ833.1 0 0 480 1193.4 0 ÿ0.16
0 0 ÿ0.079 0 ÿ1000 0 1640.4 ÿ480
0 0 0 ÿ833.1 0 ÿ0.16 ÿ480 1193.4

Table 6

Displacements, member forces, and updated loads

Displacements ÿ0.1153 ÿ0.1524 ÿ0.1159 0.1557 0.1151 ÿ0.1519 0.1159 0.1562

Forces ÿ0.7518 ÿ0.6009 ÿ0.7518 0.9473 0.7967 1.0484 0.5106 0.3901

Loads ÿ0.0029 0.0004 0.0030 0.0005 0.0024 1.0012 ÿ0.0025 1.1010

Load Pn 0 0 0 0 0 1.0 0 1.1
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4. Concluding remarks

Comprehensive sti�ness matrix, combining the two sources of ®rst-order structural sti�nessÐelastic
and statical-kinematicÐis the most general tangent sti�ness matrix for a linear (or linearized) analysis.
Conventional incremental procedures account only for the previously existing and already known
member forces produced by prestress and/or prior loading. This approach is usually adequate in a
nonlinear analysis of geometrically invariant systems, where the tangent elastic sti�ness matrix is
nonsingular, the elastic sti�ness is predominant, and even a relatively large error in quantifying the
statical-kinematic sti�ness can be tolerated.

The situation with underconstrained structural systems is diametrically opposite. Here the statical-
kinematic sti�ness is the only source of the system resistance to perturbation loads; it remedies the
singularity of the elastic sti�ness matrix by providing a solution within its null space (the space of
inextensible displacements). Hence, an accurate evaluation of the statical-kinematic sti�ness is necessary,
accounting, in particular, for the member forces induced by the equilibrium part of the currently applied
load (or load increment). This forward dependence on the yet unknown member forces correctly re¯ects
mechanics of deformation and is the principal feature of the statical-kinematic sti�ness matrix. In
contrast, the conventional techniques, lacking this feature, are not only less accurate but, in certain
cases, may prove inadequate; for example, they require some adaptations when dealing with an
underconstrained system without initial forces.

The forward dependence of statical-kinematic sti�ness on the member forces produced by the
equilibrium part of the applied load requires knowing these forces in advance. Their calculation, using
the pseudoinverse for statically determinate systems and the orthogonal load resolution for
indeterminate ones, is computationally expensive and awkward. The presented procedure, employing the
modi®ed elastic sti�ness matrix, streamlines the calculation and makes it amenable to the common
computing tools of structural analysis, thereby facilitating the use of the existing software in the analysis
of underconstrained systems.
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